The induction principle is a property of the natural numbers that is used to prove statements that are true for all $n \in \mathbb{N}$.
It is quite useful when the statement can be expressed recursively.

Example $P(n): a_{n}=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$

$$
\begin{aligned}
& a_{n+1}=\sum_{k=1}^{n+1} k=\underbrace{1+2+3+\cdots+n+n+1}_{a_{n}=\sum_{k=1}^{n} k} \\
& a_{n}=\sum_{k=1}^{n} k=1+2+3+\cdots+n \\
& a_{n+1}=a_{n}+(n+1)
\end{aligned}
$$

Principle of Induction
Suppose that for each $n \in \mathbb{N}, P(n)$ is a statement about the natural number n.
Suppose also that
-1. $P(1)$ is true.
-2. If $P(n)$ is true, then $P(n+1)$ is abs true. Then $P(n)$ is true for every $n \in \mathbb{N}$.

Example. For each $n \in \mathbb{N}, P(n): \sum_{k=1}^{n}(\pi)=\frac{n(n+1)}{2}$.
$P(1)$ is true
$n=1$: On one hand, $1+2$

$$
\sum_{k=1}^{1} k=1
$$

On the other hand

$$
\frac{n(n+1)}{2}=\frac{1(1+1)}{2}=1
$$

If $P(n)$ is true, then $P(n+1)$ is true
Now, assume that $P(n)$ is true (I.H).
We need to prove that $P(n+1)$ is true.

$$
\begin{aligned}
& P(n+1): \sum_{k=1}^{n+1} k=\frac{(n+1)(n+2)}{2} \\
& \sum_{k=1}^{n+1} k=\sum_{k=1}^{n} k+(n+1) \stackrel{\text { I.H }}{=} \frac{n(n+1)}{2}+(n+1) \\
& =\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

Therefore, by induction, $P(n)$ is true for all $n \in \mathbb{N}$.

Example. If $x \neq 1$, then

$$
\begin{array}{ll}
P(n): \sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x} \quad \forall n \in \mathbb{N} \\
\mathbb{N}=\{1,2,3, \ldots\}
\end{array}
$$

1. On one hand, $\sum_{k=0}^{1} x^{k}=x^{0}+x=1+x$

On the other hand, $\frac{1-x^{2}}{1-x}=\frac{(1-x)(1+x)}{1-x}=1+x$
So $P(1)$ is true.
2. Assume that $P(n)$ is true.

I need to show that $P(n+1)$ is true.

$$
P(n+1): \sum_{k=0}^{n+1} x^{k}=\frac{1-x^{n+2}}{1-x}
$$

$$
\begin{aligned}
\sum_{k=0}^{n+1} x^{k} & =\sum_{k=0}^{n} x^{k}+x^{n+1} \stackrel{I \cdot H}{=} \frac{1-x^{n+1}}{1-x}+x^{n+1} \\
& =\frac{1-x^{n+1}+(1-x) x^{n+1}}{1-x}=\frac{1-x^{n+1}+x^{n+1}-x^{n+2}}{1-x} \\
& =\frac{1-x^{n+2}}{1-x}
\end{aligned}
$$

So $P(n+1)$ is true.

Therefore, by induction, $P(n)$ is true.

$$
\begin{aligned}
\sum_{k=0}^{n+1} x^{k} & =\underbrace{x^{0}+x^{1}+x^{2}+\cdots+x_{3}^{n}}+x^{n+1} \\
& =\sum_{k=0}^{n} x^{k}+x^{n+1}
\end{aligned}
$$

Example For all $n \in \mathbb{N} \quad N=\{1,2,3, \ldots\}$

$$
\begin{aligned}
a^{n}-b^{n} & =(a-b) \sum_{k=1}^{n} a^{n-k} b^{k-1} \\
a^{2}-b^{2} & =(a-b)(a+b) \\
a^{3}-b^{3} & =(a-b) \sum_{k=1}^{3} a^{3-k} b^{k-1}=(a-b)\left(a^{2}+a b+b^{2}\right)
\end{aligned}
$$

$P(1)^{2}-$ On one hand, $a^{1}-b^{1}$
On the hand, $(a-b) \sum_{k=1}^{p} a^{1-k} b^{k-1}=(a-b)$
So $P(1)$ is true.

Induction Step
I.H: $a^{n}-b^{n}=(a-b) \sum_{k=1}^{n} a^{n-k} b^{k-1}$ is trove

$$
\begin{aligned}
& \text { N.T.S: } \underbrace{a^{n+1}-b^{n+1}=(a-b) \sum_{k=1}^{n+1} a^{n+1-k} b^{k-1}}_{P(n+1)} \text { is trve. } \\
& (a-b) \sum_{k=1}^{n+1} a^{n+1-k} b^{k-1}= \\
& (a-b)\left[\sum_{k=1}^{n} a^{n+1-k} b^{k-1}+a^{n+1-(n+1)} b^{(n+1)-1}\right] \\
& =(a-b) \sum_{k=1}^{n} \underbrace{a^{n+1-k} b^{k-1}}+(a-b) b^{n} \\
& \sum^{2 a a^{n-k} b^{k-1}} \\
& \left.=a(a-b) \sum_{k=1}^{n} a^{n-k} b^{k-1}\right]+(a-b) b^{n} \\
& \text { P.H: } a^{n}-b^{n} \\
& =a\left(a^{n}-b^{n}\right)+(a-b) b^{n}=a^{n+1}-a b^{n}+a b^{k}-b^{n+1} \\
& =a a^{n+1}-b^{n+1}
\end{aligned}
$$

Example. Prove by induction

$$
\begin{aligned}
1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}>\sqrt{n} \quad \begin{array}{c}
n>1 \\
n=2 \\
2>1 \rightarrow \sqrt{2}>\sqrt{1} \rightarrow \sqrt{2}+1>\sqrt{1}+1
\end{array} \\
\begin{aligned}
P(2): 1+\frac{1}{\sqrt{2}}=\frac{\sqrt{2}+1}{\sqrt{2}} & >\frac{\sqrt{1}+1}{\sqrt{2}} \\
& =\frac{2}{\sqrt{2}}=\sqrt{2}
\end{aligned}
\end{aligned}
$$

So $P(2)$ is true.

Induction Step:

NTS: $1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}>\sqrt{n+1}$ is true

$$
\begin{aligned}
& 1+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}} \stackrel{I \cdot H}{>} \sqrt{n}+\frac{1}{\sqrt{n+1}} \\
&=\frac{\sqrt{n(n+1)}+1}{\sqrt{n+1}} \\
& \begin{aligned}
n^{2}+n>n^{2} & =\frac{\sqrt{n^{2}+n}+1}{\sqrt{n+1}} \\
\sqrt{n^{2}+n}>\sqrt{n^{2}} & >\frac{\sqrt{n^{2}}+1}{\sqrt{n+1}} \\
\sqrt{n^{2}+n}+1>\sqrt{n^{2}}+1 & =\frac{n+1}{\sqrt{n+1}}=\sqrt{n+1}
\end{aligned}
\end{aligned}
$$

So $P(n+1)$ is true
and we have proved the desired result by induction.

